Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 14(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534225

ABSTRACT

Wheezing is a critical indicator of various respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD). Current diagnosis relies on subjective lung auscultation by physicians. Enabling this capability via a low-profile, objective wearable device for remote patient monitoring (RPM) could offer pre-emptive, accurate respiratory data to patients. With this goal as our aim, we used a low-profile accelerometer-based wearable system that utilizes deep learning to objectively detect wheezing along with respiration rate using a single sensor. The miniature patch consists of a sensitive wideband MEMS accelerometer and low-noise CMOS interface electronics on a small board, which was then placed on nine conventional lung auscultation sites on the patient's chest walls to capture the pulmonary-induced vibrations (PIVs). A deep learning model was developed and compared with a deterministic time-frequency method to objectively detect wheezing in the PIV signals using data captured from 52 diverse patients with respiratory diseases. The wearable accelerometer patch, paired with the deep learning model, demonstrated high fidelity in capturing and detecting respiratory wheezes and patterns across diverse and pertinent settings. It achieved accuracy, sensitivity, and specificity of 95%, 96%, and 93%, respectively, with an AUC of 0.99 on the test set-outperforming the deterministic time-frequency approach. Furthermore, the accelerometer patch outperforms the digital stethoscopes in sound analysis while offering immunity to ambient sounds, which not only enhances data quality and performance for computational wheeze detection by a significant margin but also provides a robust sensor solution that can quantify respiration patterns simultaneously.


Subject(s)
Deep Learning , Wearable Electronic Devices , Humans , Respiratory Rate , Respiratory Sounds/diagnosis , Accelerometry
2.
IEEE J Biomed Health Inform ; 28(5): 2699-2712, 2024 May.
Article in English | MEDLINE | ID: mdl-38442050

ABSTRACT

OBJECTIVE: To develop a cuffless method for estimating blood pressure (BP) from fingertip strain plethysmography (SPG) recordings. METHODS: A custom-built micro-electromechanical systems (MEMS) strain sensor is employed to record heartbeat-induced vibrations at the fingertip. An XGboost regressor is then trained to relate SPG recordings to beat-to-beat systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) values. For this purpose, each SPG segment in this setup is represented by a feature vector consisting of cardiac time interval, amplitude features, statistical properties, and demographic information of the subjects. In addition, a novel concept, coined geometric features, are introduced and incorporated into the feature space to further encode the dynamics in SPG recordings. The performance of the regressor is assessed on 32 healthy subjects through 5-fold cross-validation (5-CV) and leave-subject-out cross validation (LSOCV). RESULTS: Mean absolute errors (MAEs) of 3.88 mmHg and 5.45 mmHg were achieved for DBP and SBP estimations, respectively, in the 5-CV setting. LSOCV yielded MAEs of 8.16 mmHg for DBP and 16.81 mmHg for SBP. Through feature importance analysis, 3 geometric and 26 integral-related features introduced in this work were identified as primary contributors to BP estimation. The method exhibited robustness against variations in blood pressure level (normal to critical) and body mass index (underweight to obese), with MAE ranges of [1.28, 4.28] mmHg and [2.64, 7.52] mmHg, respectively. CONCLUSION: The findings suggest high potential for SPG-based BP estimation at the fingertip. SIGNIFICANCE: This study presents a fundamental step towards the augmentation of optical sensors that are susceptible to dark skin tones.


Subject(s)
Blood Pressure Determination , Blood Pressure , Fingers , Plethysmography , Signal Processing, Computer-Assisted , Humans , Blood Pressure Determination/methods , Fingers/physiology , Fingers/blood supply , Adult , Plethysmography/methods , Male , Blood Pressure/physiology , Female , Micro-Electrical-Mechanical Systems , Young Adult
3.
Article in English | MEDLINE | ID: mdl-38082687

ABSTRACT

This study presents fingertip strain plethysmography (SPG) as a visual trace of cardiac cycles in peripheral vessels. The setup includes a small, sensitive MEMS strain sensor attached to the fingertip to capture the pulsatile vibrations corresponding to cardiac cycles. SPG is evaluated on 10 healthy subjects for the estimation of heart rate (HR) and heart rate variability (HRV), as well as heartbeat-derived respiratory rate (RR) which is an HRV parameter. The estimated parameters are compared with a simultaneously-recorded electrocardiogram (ECG) for HR and HRV, and an inertial sensor placed on the chest wall for RR. Bland-Altman analyses suggest small estimation biases of 0.03 beats-per-minute (BPM) and 0.38 ms for HR and HRV respectively, demonstrating excellent agreement between fingertip SPG and ECG. The average estimation accuracies of 99.88% (± 0.04), 96.43% (± 1.44), and 92.64% (± 2.30) for HR, HRV, and RR respectively, prove the reliability of SPG for hemodynamic monitoring.Clinical Relevance- Conventional plethysmography sensors are either cumbersome or susceptible to skin color. This effort is a fundamental step towards the augmentation of conventional methods, thus ensuring stable, clinical-grade hemodynamic monitoring.


Subject(s)
Photoplethysmography , Vibration , Humans , Heart Rate/physiology , Reproducibility of Results , Photoplethysmography/methods , Plethysmography
4.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(10): 1189-1200, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37276110

ABSTRACT

This article discusses the potential of 4H-silicon carbide (SiC) as a superior acoustic material for microelectromechanical systems (MEMS), particularly for high-performance resonator and extreme environments applications. Through a comparison of the crystalline structure along with the mechanical, acoustic, electrical, and thermal properties of 4H with respect to other SiC polytypes and silicon, it is shown that 4H-SiC possesses salient properties for MEMS applications, including its transverse isotropy and small phonon scattering dissipation. The utility and implementation of bonded SiC on insulator (4H-SiCOI) substrates as an emerging MEMS technology platform are presented. Additionally, this article reports on the temperature-dependent mechanical properties of 4H-SiC, including the temperature coefficient of frequency (TCF) and quality factor ( Q -factor) for Lamé mode resonators. Finally, the 4H-SiC MEMS fabrication including its deep reactive ion etching is discussed. This article provides valuable insights into the potential of 4H-SiC as a mechanoacoustic material and provides a foundation for future research in the field.

5.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(10): 1172-1188, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37294656

ABSTRACT

Piezoelectric microelectromechanical systems (MEMS) resonators possess favorable properties, such as strong electromechanical coupling, high Q , and polarized linear transduction, making them ideal for various applications, including timing, sensing, and RF communication. However, due to process nonidealities and temperature variations, these resonators characteristics may deviate from their designed frequency and resonant eigenmode, requiring careful compensation for stable and precise operation. Furthermore, certain devices, such as gyroscopic resonators, have two eigenmodes that need to be adjusted for frequency proximity and cross-mode coupling. Therefore, mode-shape manipulation can also be important in piezoelectric resonators and will be another focus of this article. Techniques for frequency and eigenmode control are classified into device- or system-level tuning, trimming, and compensation. This article will compare and discuss the effectiveness of these techniques in specific applications to provide a comprehensive understanding of frequency and eigenmode control in piezoelectric MEMS resonators, aiding the development of advanced MEMS devices for diverse applications.

6.
IEEE Trans Biomed Eng ; 70(9): 2540-2551, 2023 09.
Article in English | MEDLINE | ID: mdl-37028021

ABSTRACT

OBJECTIVE: Development of a contact microphone-driven screening framework for the diagnosis of coexisting valvular heart diseases (VHDs). METHODS: A sensitive accelerometer contact microphone (ACM) is employed to capture heart-induced acoustic components on the chest wall. Inspired by the human auditory system, ACM recordings are initially transformed into Mel-frequency cepstral coefficients (MFCCs) and their first and second derivatives, resulting in 3-channel images. An image-to-sequence translation network based on the convolution-meets-transformer (CMT) architecture is then applied to each image to find local and global dependencies in images, and predict a 5-digit binary sequence, where each digit corresponds to the presence of a specific type of VHD. The performance of the proposed framework is evaluated on 58 VHD patients and 52 healthy individuals using a 10-fold leave-subject-out cross-validation (10-LSOCV) approach. RESULTS: Statistical analyses suggest an average sensitivity, specificity, accuracy, positive predictive value, and F1 score of 93.28%, 98.07%, 96.87%, 92.97%, and 92.4% respectively, for the detection of coexisting VHDs. Furthermore, areas under the curve (AUC) of 0.99 and 0.98 are respectively reported for the validation and test sets. CONCLUSION: The high performances achieved prove that local and global features of ACM recordings effectively characterize heart murmurs associated with valvular abnormalities. SIGNIFICANCE: Limited access of primary care physicians to echocardiography machines has resulted in a low sensitivity of 44% when using a stethoscope for the identification of heart murmurs. The proposed framework provides accurate decision-making on the presence of VHDs, thus reducing the number of undetected VHD patients in primary care settings.


Subject(s)
Heart Valve Diseases , Humans , Heart Valve Diseases/diagnostic imaging , Heart Murmurs/diagnosis , Heart Auscultation , Echocardiography , Predictive Value of Tests
7.
Microsyst Nanoeng ; 9: 18, 2023.
Article in English | MEDLINE | ID: mdl-36844940

ABSTRACT

In this paper, a modification to the eigenmode operation of resonant gyroscopes is introduced. The multi-coefficient eigenmode operation can improve cross-mode isolation due to electrode misalignments and imperfections, which is one of the causes of residual quadrature errors in conventional eigenmode operations. A 1400 µm annulus aluminum nitride (AlN) on a silicon bulk acoustic wave (BAW) resonator with gyroscopic in-plane bending modes at 2.98 MHz achieves a nearly 60 dB cross-mode isolation when operated as a gyroscope using a multi-coefficient eigenmode architecture. The as-born frequency mismatches in multiple devices are compensated by physical laser trimming. The demonstrated AlN piezoelectric BAW gyroscope shows a large open-loop bandwidth of 150 Hz and a high scale factor of 9.5 nA/°/s on a test board with a vacuum chamber. The measured angle random walk is 0.145°/√h, and the bias instability is 8.6°/h, showing significant improvement compared to the previous eigenmode AlN BAW gyroscope. The results from this paper prove that with multi-coefficient eigenmode operations, piezoelectric AlN BAW gyroscopes can achieve a noise performance comparable to that of their capacitive counterpart while having the unique advantage of a large open-loop bandwidth and not requiring large DC polarization voltages.

8.
IEEE J Biomed Health Inform ; 27(1): 274-285, 2023 01.
Article in English | MEDLINE | ID: mdl-36318550

ABSTRACT

OBJECTIVE: The development of an accurate, non-invasive method for the diagnosis of peripheral artery disease (PAD) from accelerometer contact microphone (ACM) recordings of the cardiac system. METHODS: Mel frequency cepstral coefficients (MFCCs) are initially extracted from ACM recordings. The extracted MFCCs are then used to fine-tune a pre-trained ResNet50 network whose middle layers provide streams of high-level-of-abstraction coefficients (HLACs) which could provide information on blood pressure backflow caused by arterial obstructions in PAD patients. A vision transformer is finally integrated with the feature extraction layer to detect PAD, and stratify the severity level. This architecture is coined multi-stream-powered vision transformer (MSPViT). The performance of MSPViT is evaluated on 74 PAD and 21 healthy subjects. RESULTS: Sensitivity, specificity, F1 score, and area under the curve (AUC) of 99.45%, 98.21%, 99.37%, and 0.99, respectively, are reported for the binary classification which ensures accurate detection of PAD. Furthermore, MSPViT suggests average sensitivity, specificity, F1 score, and AUC of 96.66%, 97.34%, 96.29%, and 0.96, respectively, for the classification of subjects into healthy, mild-PAD, and severe-PAD classes. The silhouette score is calculated to assess the separability of clusters formed for classes in the penultimate layer of MSPViT. An average silhouette score of 0.66 and 0.81 demonstrate excellent cluster separability in PAD detection and severity classification, respectively. CONCLUSION: The achieved performance suggests that the proximal ACM-driven framework can replace state-of-the-art techniques for PAD detection. SIGNIFICANCE: This study presents a fundamental step towards prompt and accurate diagnosis of PAD and stratification of its severity level.


Subject(s)
Peripheral Arterial Disease , Humans , Blood Pressure , Accelerometry
9.
Sci Rep ; 11(1): 13427, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183695

ABSTRACT

Monitoring pathological mechano-acoustic signals emanating from the lungs is critical for timely and cost-effective healthcare delivery. Adventitious lung sounds including crackles, wheezes, rhonchi, bronchial breath sounds, stridor or pleural rub and abnormal breathing patterns function as essential clinical biomarkers for the early identification, accurate diagnosis and monitoring of pulmonary disorders. Here, we present a wearable sensor module comprising of a hermetically encapsulated, high precision accelerometer contact microphone (ACM) which enables both episodic and longitudinal assessment of lung sounds, breathing patterns and respiratory rates using a single integrated sensor. This enhanced ACM sensor leverages a nano-gap transduction mechanism to achieve high sensitivity to weak high frequency vibrations occurring on the surface of the skin due to underlying lung pathologies. The performance of the ACM sensor was compared to recordings from a state-of-art digital stethoscope, and the efficacy of the developed system is demonstrated by conducting an exploratory research study aimed at recording pathological mechano-acoustic signals from hospitalized patients with a chronic obstructive pulmonary disease (COPD) exacerbation, pneumonia, and acute decompensated heart failure. This unobtrusive wearable system can enable both episodic and longitudinal evaluation of lung sounds that allow for the early detection and/or ongoing monitoring of pulmonary disease.


Subject(s)
Accelerometry/methods , Auscultation/methods , Lung Diseases/diagnosis , Respiratory Sounds/diagnosis , Accelerometry/instrumentation , Adult , Aged , Auscultation/instrumentation , Cheyne-Stokes Respiration/diagnosis , Cheyne-Stokes Respiration/physiopathology , Digital Technology , Early Diagnosis , Equipment Design , Heart Failure/physiopathology , Humans , Lung Diseases/physiopathology , Male , Middle Aged , Pneumonia/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiration , Stethoscopes , Vibration
10.
NPJ Digit Med ; 3: 19, 2020.
Article in English | MEDLINE | ID: mdl-32128449

ABSTRACT

Mechano-acoustic signals emanating from the heart and lungs contain valuable information about the cardiopulmonary system. Unobtrusive wearable sensors capable of monitoring these signals longitudinally can detect early pathological signatures and titrate care accordingly. Here, we present a wearable, hermetically-sealed high-precision vibration sensor that combines the characteristics of an accelerometer and a contact microphone to acquire wideband mechano-acoustic physiological signals, and enable simultaneous monitoring of multiple health factors associated with the cardiopulmonary system including heart and respiratory rate, heart sounds, lung sounds, and body motion and position of an individual. The encapsulated accelerometer contact microphone (ACM) utilizes nano-gap transducers to achieve extraordinary sensitivity in a wide bandwidth (DC-12 kHz) with high dynamic range. The sensors were used to obtain health factors of six control subjects with varying body mass index, and their feasibility in detection of weak mechano-acoustic signals such as pathological heart sounds and shallow breathing patterns is evaluated on patients with preexisting conditions.

11.
Microsyst Nanoeng ; 6: 53, 2020.
Article in English | MEDLINE | ID: mdl-34567664

ABSTRACT

This paper presents a novel high-Q silicon distributed Lamé mode resonator (DLR) for VHF timing reference applications. The DLR employs the nature of shear wave propagation to enable a cascade of small square Lamé modes in beam or frame configurations with increased transduction area. Combined with high efficiency nano-gap capacitive transduction, it enables low motional impedances while scaling the frequency to VHF range. The DLR designs are robust against common process variations and demonstrate high manufacturability across different silicon substrates and process specifications. Fabricated DLRs in beam and frame configurations demonstrate high performance scalability with high Q-factors ranging from 50 to 250 k, motional impedances <1 kΩ, and high-temperature frequency turnover points >90 °C in the VHF range, and are fabricated using a wafer-level-packaged HARPSS process. Packaged devices show excellent robustness against temperature cycling, device thinning, and aging effects, which makes them a great candidate for stable high frequency references in size-sensitive and power-sensitive 5 G and other IoT applications.

12.
Microsyst Nanoeng ; 6: 108, 2020.
Article in English | MEDLINE | ID: mdl-34567717

ABSTRACT

The theory of eigenmode operation of Coriolis vibratory gyroscopes and its implementation on a thin-film piezoelectric gyroscope is presented. It is shown analytically that the modal alignment of resonant gyroscopes can be achieved by applying a rotation transformation to the actuation and sensing directions regardless of the transduction mechanism. This technique is especially suitable for mode matching of piezoelectric gyroscopes, obviating the need for narrow capacitive gaps or DC polarization voltages. It can also be applied for mode matching of devices that require sophisticated electrode arrangements for modal alignment, such as electrostatic pitch and roll gyroscopes with slanted electrodes utilized for out-of-plane quadrature cancellation. Gyroscopic operation of a 3.15 MHz AlN-on-Si annulus resonator that utilizes a pair of high-Q degenerate in-plane vibration modes is demonstrated. Modal alignment of the piezoelectric gyroscope is accomplished through virtual alignment of the excitation and readout electrodes to the natural direction of vibration mode shapes in the presence of fabrication nonidealities. Controlled displacement feedback of the gyroscope drive signal is implemented to achieve frequency matching of the two gyroscopic modes. The piezoelectric gyroscope shows a mode-matched operation bandwidth of ~250 Hz, which is one of the largest open-loop bandwidth values reported for a mode-matched MEMS gyroscope, a small motional resistance of ~1300 Ω owing to efficient piezoelectric transduction, and a scale factor of 1.57 nA/°/s for operation at atmospheric pressure, which greatly relaxes packaging requirements. Eigenmode operation results in an ~35 dB reduction in the quadrature error at the resonance frequency. The measured angle random walk of the device is 0.86°/√h with a bias instability of 125°/h limited by the excess noise of the discrete electronics.

13.
Sci Rep ; 9(1): 18698, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31822789

ABSTRACT

Micromechanical resonators with ultra-low energy dissipation are essential for a wide range of applications, such as navigation in GPS-denied environments. Routinely implemented in silicon (Si), their energy dissipation often reaches the quantum limits of Si, which can be surpassed by using materials with lower intrinsic loss. This paper explores dissipation limits in 4H monocrystalline silicon carbide-on-insulator (4H-SiCOI) mechanical resonators fabricated at wafer-level, and reports on ultra-high quality-factors (Q) in gyroscopic-mode disk resonators. The SiC disk resonators are anchored upon an acoustically-engineered Si substrate containing a phononic crystal which suppresses anchor loss and promises QANCHOR near 1 Billion by design. Operating deep in the adiabatic regime, the bulk acoustic wave (BAW) modes of solid SiC disks are mostly free of bulk thermoelastic damping. Capacitively-transduced SiC BAW disk resonators consistently display gyroscopic m = 3 modes with Q-factors above 2 Million (M) at 6.29 MHz, limited by surface TED due to microscale roughness along the disk sidewalls. The surface TED limit is revealed by optical measurements on a SiC disk, with nanoscale smooth sidewalls, exhibiting Q = 18 M at 5.3 MHz, corresponding to f · Q = 9 · 1013 Hz, a 5-fold improvement over the Akhiezer limit of Si. Our results pave the path for integrated SiC resonators and resonant gyroscopes with Q-factors beyond the reach of Si.

14.
Nat Commun ; 10(1): 1831, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015477

ABSTRACT

Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present microfabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface. Precise, lithographic definition of the guiding channels allowed for shaping and tailoring the velocity distributions in ways not possible using conventional machining. Multiple miniature beams with individually prescribed geometries were created, including collimated, focusing and diverging outputs. A "cascaded" collimator was realized with 40 times greater purity than conventional collimators. These localized, miniature atom beam sources can be a valuable resource for a number of quantum technologies, including atom interferometers, clocks, Rydberg atoms, and hybrid atom-nanophotonic systems, as well as enabling controlled studies of atom-surface interactions at the nanometer scale.

15.
IEEE J Biomed Health Inform ; 23(6): 2365-2374, 2019 11.
Article in English | MEDLINE | ID: mdl-30703050

ABSTRACT

OBJECTIVE: Systolic time intervals, such as the pre-ejection period (PEP), are important parameters for assessing cardiac contractility that can be measured non-invasively using seismocardiography (SCG). Recent studies have shown that specific points on accelerometer- and gyroscope-based SCG signals can be used for PEP estimation. However, the complex morphology and inter-subject variation of the SCG signal can make this assumption very challenging and increase the root mean squared error (RMSE) when these techniques are used to develop a global model. METHODS: In this study, we compared gyroscope- and accelerometer-based SCG signals, individually and in combination, for estimating PEP to show the efficacy of these sensors in capturing valuable information regarding cardiovascular health. We extracted general time-domain features from all the axes of these sensors and developed global models using various regression techniques. RESULTS: In single-axis comparison of gyroscope and accelerometer, angular velocity signal around head to foot axis from the gyroscope provided the lowest RMSE of 12.63 ± 0.49 ms across all subjects. The best estimate of PEP, with a RMSE of 11.46 ± 0.32 ms across all subjects, was achieved by combining features from the gyroscope and accelerometer. Our global model showed 30% lower RMSE when compared to algorithms used in recent literature. CONCLUSION: Gyroscopes can provide better PEP estimation compared to accelerometers located on the mid-sternum. Global PEP estimation models can be improved by combining general time domain features from both sensors. SIGNIFICANCE: This work can be used to develop a low-cost wearable heart-monitoring device and to generate a universal estimation model for systolic time intervals using a single- or multiple-sensor fusion.


Subject(s)
Accelerometry/instrumentation , Heart Function Tests , Signal Processing, Computer-Assisted/instrumentation , Wearable Electronic Devices , Adult , Algorithms , Female , Heart/physiology , Heart Function Tests/instrumentation , Heart Function Tests/methods , Humans , Male , Monitoring, Physiologic , Young Adult
16.
Article in English | MEDLINE | ID: mdl-29993545

ABSTRACT

This paper presents a 77.7-MHz silicon microelectromechanical-systems oven-controlled oscillator (MEMS OCXO) that uses the structural resistance ( ) of the resonator as an embedded temperature sensor. The exhibits a large temperature coefficient of resistance and is used as a self-temperature sensor to accurately and locally monitor the temperature of the resonator. A high-Q capacitive cross-sectional Lamé-mode resonator fabricated using the nanogap high aspect-ratio combined poly- and single-crystal silicon process (HARPSS) is used as the frequency selective element. A silicon resistor micro-oven is implemented on the MEMS die adjacent to the resonator and the ensemble is wafer-level packaged in vacuum to yield a 2 mm mm MEMS die. The micro-oven resistor is automatically controlled by the analog loop to provide active temperature stabilization for the resonator. A resistance temperature detector (RTD) circuit, high-gain loop filter, and heater amplifier are implemented as the analog micro-oven control loop. To further boost the frequency stability, a digital feedforward calibration path which uses the digitized RTD output to fine tune the phase shift of the sustaining amplifier is added to the system. The silicon MEMS OCXO achieves ±0.3-ppm frequency stability from -25 °C to 85 °C. The microresonator is interfaced with a sustaining amplifier implemented in Taiwan Semiconductor Manufacturing Company 0.35-s CMOS process, consuming 16 mA from a 3.2-V supply.

17.
Microsyst Nanoeng ; 3: 16092, 2017.
Article in English | MEDLINE | ID: mdl-31057855

ABSTRACT

This paper presents the design, fabrication, and characterization of a novel high quality factor (Q) resonant pitch/roll gyroscope implemented in a 40 µm (100) silicon-on-insulator (SOI) substrate without using the deep reactive-ion etching (DRIE) process. The featured silicon gyroscope has a mode-matched operating frequency of 200 kHz and is the first out-of-plane pitch/roll gyroscope with electrostatic quadrature tuning capability to fully compensate for fabrication non-idealities and variation in SOI thickness. The quadrature tuning is enabled by slanted electrodes with sub-micron capacitive gaps along the (111) plane created by an anisotropic wet etching. The quadrature cancellation enables a 20-fold improvement in the scale factor for a typical fabricated device. Noise measurement of quadrature-cancelled mode-matched devices shows an angle random walk (ARW) of 0.63° √h-1 and a bias instability of 37.7° h-1, partially limited by the noise of the interface electronics. The elimination of silicon DRIE in the anisotropically wet-etched gyroscope improves the gyroscope robustness against the process variation and reduces the fabrication costs. The use of a slanted electrode for quadrature tuning demonstrates an effective path to reach high-performance in future pitch and roll gyroscope designs for the implementation of single-chip high-precision inertial measurement units (IMUs).

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4695-4698, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269320

ABSTRACT

A dual-axis single-proof-mass angular accelerometer has been developed for a vestibular prosthesis. Designed to sense head rotations both in the yaw and the pitch planes, the output of the inertial sensor may be coded as amplitude or rate modulated biphasic current pulses to stimulate vestibular nerves. Fabricated with a high aspect ratio commercial process, a sensor with small form factor (1.4 mm × 0.8 mm) is achieved with a scale factor of 95.5 µV/rad/sec2 and 145.8 µV/rad/sec2 in the yaw and the pitch planes, respectively. Superior linear acceleration rejection was demonstrated for both rotating axis, and an overall power consumption of 296 µW was estimated including sensor and interface circuit.


Subject(s)
Acceleration , Prostheses and Implants , Vestibule, Labyrinth/physiology , Electrodes , Humans , Prosthesis Implantation
19.
Microsyst Nanoeng ; 2: 16015, 2016.
Article in English | MEDLINE | ID: mdl-31057820

ABSTRACT

This paper reports on a new type of high-frequency mode-matched gyroscope with significantly reduced dependencies on environmental stimuli such as temperature, vibration, and shock. A novel stress-isolation system is used to effectively decouple an axis-symmetric bulk-acoustic wave (BAW) vibratory gyro from its substrate, minimizing the effect that external sources of error have on the offset and scale factor of the device. Substrate-decoupled (SD) BAW gyros with a resonance frequency of 4.3 MHz and Q values near 60 000 were implemented using the high aspect ratio poly and single-crystal silicon (HARPSS) process to achieve ultra-narrow capacitive gaps. Wafer-level packaged sensors were interfaced with a customized application-specific integrated circuit (ASIC) to achieve low variations in the offset across temperature (±26° s-1 from -40 to 85 °C), supreme random-vibration immunity (0.012° s-1 gRMS -1) and excellent shock rejection. With a scale factor of 800 µV (°s-1)-1, the SD-BAW gyro system attains a large full-scale range (±1250° s-1) with a non-linearity of less than 0.07%. A measured angle-random walk (ARW) of 0.39°/√h and a bias instability of 10.5°h-1 are dominated by the thermal and flicker noise of the integrated circuit (IC), respectively. Additional measurements using external electronics show bias-instability values as low as 3.5°h-1, which are limited by feed-through signals coupled from the drive loop to the sense channel, which can be further reduced through proper re-routing of the gyroscope pin-out configuration.

20.
Article in English | MEDLINE | ID: mdl-25965675

ABSTRACT

This paper reports on the design, implementation, and phase-noise optimization of low-power interface IC for dual-frequency oscillators that utilize two high quality factor (Q) width-extensional bulk acoustic modes of the same AlN-on-silicon resonator. Two 0.5-µm CMOS transimpedance amplifiers (TIA) have been designed, characterized, and interfaced with two dual-mode resonators operating at 35.5/105.7 MHz (first/third order modes) and 35.5/174.9 MHz (first/ fifth order modes). One TIA uses open-loop regulated cascode (RGC) topology in the first stage to enable low power operation, whereas the second one uses an inverter with shunt-shunt feedback to deliver higher gain with lower phase noise. An on-chip switching network is incorporated into each TIA to change the oscillation frequency based on the different phase shift. The effect of TIA on the phase-noise performance of oscillators is studied and compared for both topologies. The measured phase noise of low- and high-frequency modes at 1 kHz offset from carrier are -114 and -108 dBc/Hz for the 35/105 MHz oscillator, and -108 and -105 dBc/Hz for the 35/175 MHz oscillator, respectively, whereas the far-from-carrier reaches below -140 dBc/Hz in all cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...